Survey-based identification of design requirements and constraints for a wearable tremor suppression device

Author:

Zhou Yue1ORCID,Box Devin2,Hardy Kenneth G3,Jenkins Mary E4,Garland Jayne5,Naish Michael D167,Trejos Ana Luisa17

Affiliation:

1. School of Biomedical Engineering, Western University, London, ON, Canada

2. School of Kinesiology, Western University, London, ON, Canada

3. Ivey Business School, Western University, London, ON, Canada

4. Movement Disorders Program, Clinical Neurological Sciences, Western University, London, ON, Canada

5. Faculty of Health Sciences, Western University, London, ON, Canada

6. Department of Mechanical and Materials Engineering, Western University, London, ON, Canada

7. Department of Electrical and Computer Engineering, Western University, London, ON, Canada

Abstract

Introduction Parkinsonian tremor has severely impacted the lives of 65% of individuals with Parkinson’s disease, and nearly 25% do not respond to traditional treatments. Although wearable tremor suppression devices (WTSDs) have become a promising alternative approach, this technology is still in the early stages of development, and no studies have reported the stakeholders’ opinions on this technology and their desired design requirements. Methods An online survey was distributed to affected Canadians and Canadian movement disorder specialists (MDS) to acquire information on demographics, the current state of treatments, opinions on the WTSDs, and the desired design requirements of future WTSDs. Results A total of 101 affected individuals and 24 MDS completed the survey. It was found that both groups are generally open to using WTSDs to manage tremor. The most important design requirement to end users is the adaptability to lifestyle, followed by weight and size, accurate motion, comfort, safety, quick response, and cost. Lastly, most of the participants (65%) think that the device should cost under $500. Conclusions The findings from this study can be used as guidelines for the development of future WTSDs, such that the future generations could be evaluated and accepted by the end users.

Funder

Peter C. Maurice Research Fellowship in Biomedical Engineering

Early Researcher Award by Ontario Ministry of Economic Development, Trade and Employment, and the Ontario Ministry of Research and Innovation

Canadian Foundation for Innovation

Collaborative Health Research Projects (CHRP) grant by NSERC and CIHR

Ontario Research Fund

Publisher

SAGE Publications

Subject

Ocean Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3