Affiliation:
1. School of Mechatronic Systems Engineering, Simon Fraser University, Surrey, British Columbia, Canada
Abstract
This paper presents the design and performance analysis and experimental study of a 3-RRR spherical parallel manipulator in the context of hip exoskeleton applications. First, the mechanism’s inverse kinematics analysis and Jacobian matrix development are revisited. Manipulability, dexterity, and rotational sensitivity indices are then evaluated for two different methods of attachment to the human body. The superior attachment method in terms of these performance measures is indicated, and an experimental study based on the selected method is conducted; the experiment involves testing the capability of a 3-RRR manipulator’s end-effector in tracking the motions experienced by a human hip joint during normal gait cycles. Finally, the results of the experimental study indicate that the manipulator represents a feasible hip exoskeleton solution providing total kinematic compliance with the human hip joint’s 3-degree-of-freedom motion capabilities.
Funder
natural science and engineering research council
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献