Garments for functional electrical stimulation: Design and proofs of concept

Author:

Moineau Bastien123ORCID,Marquez-Chin Cesar14ORCID,Alizadeh-Meghrazi Milad12,Popovic Milos R13

Affiliation:

1. Rehabilitation Engineering Laboratory, Lyndhurst Centre, KITE, Toronto Rehabilitation Institute – University Health Network, Toronto, ON, Canada

2. Myant Inc., Toronto, ON, Canada

3. Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada

4. Department of Occupational Sciences and Occupational Therapy, University of Toronto, Toronto, ON, Canada

Abstract

Introduction Repeated use of functional electrical stimulation can promote functional recovery in individuals with neurological paralysis. We designed garments able to deliver functional electrical stimulation. Methods Shirts and pants containing electrodes knitted with a conductive yarn were produced. Electrodes were moistened with water before use. Stimulation intensity at four thresholds levels (sensory, movement, full range of motion, and maximal), stimulation comfort, and electrical properties of the interface were tested in one able-bodied subject with garment electrodes and size-matched conventional gel electrodes. The pants and shirt were then used to explore usability and design limitations. Results Compared to gel electrodes, fabric electrodes had a lower sensory threshold (on forearm muscles) but they had a higher maximal stimulation threshold (for all tested muscles). The stimulation delivery was comfortable when the garment electrodes were recently moistened; however, as the electrodes dried (within 9 to 18 min) stimulation became unpleasant. Inconsistent water content in the fabric electrodes caused inconsistent intensity thresholds and inconsistent voltage necessary to apply a desired stimulation current. Garments’ tightness and impracticality of electrode lead necessitate further design improvement. Conclusions Fabric electrodes offer a promising alternative to gel electrodes. Further work involving people with paralysis is required to overcome the identified challenges.

Funder

Spinal Cord Injury Ontario

AGE-WELL NCE

Publisher

SAGE Publications

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3