Investigation of different stimulation patterns with doublet pulses to reduce muscle fatigue

Author:

Ruslee Ruslinda12ORCID,Miller Jennifer1,Gollee Henrik1

Affiliation:

1. Centre for Rehabilitation Engineering, University of Glasgow, Glasgow, UK

2. Department of Electronics Engineering, MARA Japan Industrial Institute (MJII), Beranang, Selangor, Malaysia

Abstract

Introduction: Functional electrical stimulation is a common technique used in the rehabilitation of individuals with a spinal cord injury to produce functional movement of paralysed muscles. However, it is often associated with rapid muscle fatigue which limits its applications. Methods: The objective of this study is to investigate the effects on the onset of fatigue of different multi-electrode patterns of stimulation via multiple pairs of electrodes using doublet pulses: Synchronous stimulation is compared to asynchronous stimulation patterns which are activated sequentially (AsynS) or randomly (AsynR), mimicking voluntary muscle activation by targeting different motor units. We investigated these three different approaches by applying stimulation to the gastrocnemius muscle repeatedly for 10 min (300 ms stimulation followed by 700 ms of no-stimulation) with 40 Hz effective frequency for all protocols and doublet pulses with an inter-pulse-interval of 6 ms. Eleven able-bodied volunteers (28 ± 3 years old) participated in this study. Ultrasound videos were recorded during stimulation to allow evaluation of changes in muscle morphology. The main fatigue indicators we focused on were the normalised fatigue index, fatigue time interval and pre-post twitch–tetanus ratio. Results: The results demonstrate that asynchronous stimulation with doublet pulses gives a higher normalised fatigue index (0.80 ± 0.08 and 0.87 ± 0.08) for AsynS and AsynR, respectively, than synchronous stimulation (0.62 ± 0.06). Furthermore, a longer fatigue time interval for AsynS (302.2 ± 230.9 s) and AsynR (384.4 ± 279.0 s) compared to synchronous stimulation (68.0 ± 30.5 s) indicates that fatigue occurs later during asynchronous stimulation; however, this was only found to be statistically significant for one of two methods used to calculate the group mean. Although no significant difference was found in pre-post twitch–tetanus ratio, there was a trend towards these effects. Conclusion: In this study, we proposed an asynchronous stimulation pattern for the application of functional electrical stimulation and investigated its suitability for reducing muscle fatigue compared to previous methods. The results show that asynchronous multi-electrode stimulation patterns with doublet pulses may improve fatigue resistance in functional electrical stimulation applications in some conditions.

Publisher

SAGE Publications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3