A pilot case series for concurrent validation of inertial measurement units to motion capture in individuals who use unilateral lower-limb prostheses

Author:

Finco MG1ORCID,Patterson Rita M2,Moudy Sarah C12

Affiliation:

1. Department of Anatomy and Physiology, University of North Texas Health Science Center, Fort Worth, TX, USA

2. Department of Family and Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth, TX, USA

Abstract

Introduction Inertial measurement units (IMUs) may be viable options to collect gait data in clinics. This study compared IMU to motion capture data in individuals who use unilateral lower-limb prostheses. Methods Participants walked with lower-body IMUs and reflective markers in a motion analysis space. Sagittal plane hip, knee, and ankle waveforms were extracted for the entire gait cycle. Discrete points of peak flexion, peak extension, and range of motion were extracted from the waveforms. Stance times were also extracted to assess the IMU software’s accuracy at detecting gait events. IMU and motion capture-derived data were compared using absolute differences and root mean square error (RMSE). Results Five individuals ( n = 3 transtibial; n = 2 transfemoral) participated. IMU prosthetic limb data was similar to motion capture (RMSE: waveform ≤4.65°; discrete point ≤9.04°; stance ≤0.03s). However, one transfemoral participant had larger differences at the microprocessor knee joint (RMSE: waveform ≤15.64°; discrete ≤29.21°) from IMU magnetometer interference. Intact limbs tended to have minimal differences between IMU and motion capture data (RMSE: waveform ≤6.33°; discrete ≤9.87°; stance ≤0.04s). Conclusion Findings from this pilot study suggest IMUs have the potential to collect data similar to motion capture systems in sagittal plane kinematics and stance time.

Funder

National Institutes of Health/National Institute on Aging and the Institute for Healthy Aging

American Orthotic and Prosthetic Association research award administered by the Center of Orthotic and Prosthetic Learning/and Outcomes/Evidence-Based Practice

Publisher

SAGE Publications

Subject

Ocean Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3