Using a robotic teleoperation system for haptic exploration

Author:

Puyo Lina M Becerra1,Capel Heather M1ORCID,Phelan Shanon K2,Wiebe Sandra A3,Adams Kim D1

Affiliation:

1. Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB, Canada

2. School of Occupational Therapy, Faculty of Health, Dalhousie University, Halifax, NS, Canada

3. Faculty of Arts, University of Alberta, Edmonton, AB, Canada

Abstract

Introduction When children with physical impairments cannot perform hand movements for haptic exploration, they miss opportunities to learn about object properties. Robotics systems with haptic feedback may better enable object exploration. Methods Twenty-four adults and ten children without physical impairments, and one adult with physical impairments, explored tools to mix substances or transport different sized objects. All participants completed the tasks with both a robotic system and manual exploration. Exploratory procedures used to determine object properties were also observed. Results Adults and children accurately identified appropriate tools for each task using manual exploration, but they were less accurate using the robotic system. The adult with physical impairment identified appropriate tools for transport in both conditions, however had difficulty identifying tools used for mixing substances. A new exploratory procedure was observed, Tapping, when using the robotic system. Conclusions Adults and children could make judgements on tool utility for tasks using both manual exploration and the robotic system, however they experienced limitations in the robotics system that require more study. The adult with disabilities required less assistance to explore tools when using the robotic system. The robotic system may be a feasible way for individuals with physical disabilities to perform haptic exploration.

Funder

Canadian Institutes of Health Research

Natural Sciences and Engineering Research Council of Canada

Publisher

SAGE Publications

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3