Rolling resistance of casters increases significantly after two years of simulated use

Author:

Wilson-Jene Holly12ORCID,Mhatre Anand12,Ott Joseph12ORCID,Krider Benjamin12,Smith Clair1,Terhorst Lauren1,Pearlman Jonathan12ORCID

Affiliation:

1. Department of Rehabilitation Science and Technology, University of Pittsburgh, PA, USA

2. International Society of Wheelchair Professionals, Pittsburgh, PA USA

Abstract

Introduction Manual wheelchair propulsion is associated with upper limb pain and injury, and clinical guidelines recommend minimizing propulsive force to lower health risks. One of the strategies to reduce propulsive force is by minimizing rolling resistance (RR). Product testing studies suggest that RR of casters is affected by wear and tear which could have implications on the health risk of wheelchair users. The study will investigate the relationship between caster RR and environmental exposure using standard testing protocols. Methods RR of ten casters representing a range of diameters for different models of wheelchairs were measured before and after environmental exposure that includes corrosion, shock and abrasion simulating two years of community use. Results Four casters exhibited failures during durability testing, one catastrophically. Increases to RR after corrosion, shock and abrasion exposure were statistically significant using mixed-effects modeling, and four casters had increased RR greater than 20%. Conclusions Many of the casters evaluated exhibited increased RR forces and failure after environmental exposure. Improved caster design and use of corrosion resistant materials may reduce these failures. In addition, modification of the provision process could include replacement casters to reduce failures and avoid breakdowns that leave manual wheelchair users stranded or injured.

Funder

United States Agency for International Development (USAID) and University Research Co., LLC

National Science Foundation Integrative Graduate Education and Research Traineeship

United States Agency for International Development USAID and WORLD Learning

UnUnited States Agency for International Development (USAID) and Advancing Partners and Communities

Publisher

SAGE Publications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3