Segmentation of shoulder rehabilitation exercises for single and multiple inertial sensor systems

Author:

Brennan Louise123ORCID,Bevilacqua Antonio24,Kechadi Tahar24,Caulfield Brian23

Affiliation:

1. Physiotherapy Department, Beacon Hospital, Dublin, Ireland

2. Insight Centre for Data Analytics, University College Dublin, Dublin, Ireland

3. School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland

4. School of Computer Science, University College Dublin, Dublin, Ireland

Abstract

Introduction Digital home rehabilitation systems require accurate segmentation methods to provide appropriate feedback on repetition counting and exercise technique. Current segmentation methods are not suitable for clinical use; they are not highly accurate or require multiple sensors, which creates usability problems. We propose a model for accurately segmenting inertial measurement unit data for shoulder rehabilitation exercises. This study aims to use inertial measurement unit data to train and test a machine learning segmentation model for single- and multiple-inertial measurement unit systems and to identify the optimal single-sensor location. Methods A focus group of specialist physiotherapists selected the exercises, which were performed by participants wearing inertial measurement units on the wrist, arm and scapula. We applied a novel machine learning based segmentation technique involving a convolutional classifier and Finite State Machine to the inertial measurement unit data. An accuracy score was calculated for each possible single- or multiple-sensor system. Results The wrist inertial measurement unit was chosen as the optimal single-sensor location for future system development (mean overall accuracy 0.871). Flexion and abduction based exercises mostly could be segmented with high accuracy, but scapular movement exercises had poor accuracy. Conclusion A wrist-worn single inertial measurement unit system can accurately segment shoulder exercise repetitions; however, accuracy varies depending on characteristics of the exercise.

Funder

H2020 Marie Skłodowska-Curie Actions

Publisher

SAGE Publications

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3