Charge-based hysteresis compensation in low impedance piezoelectric actuators by a modified Prandtl–Ishlinskii model

Author:

Ghafarirad H1,Rezaei SM1,Zareinejad M2,Mardi NA3ORCID

Affiliation:

1. Department of Mechanical Engineering, Amirkabir University of Technology, Iran

2. New Technologies Research Centre, Amirkabir University of Technology, Iran

3. Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Malaysia

Abstract

Piezoelectric actuators are one of the most popular actuators in micro- and nano-applications. The main deficiency of these actuators is the hysteretic behavior. Hysteresis not only can destroy the positioning accuracy, but also may lead to instability. In previous researches, hysteresis in the mechanical domain (voltage–position) has been modeled and compensated by several approaches. The limiting condition has been position measurement by a high cost, fine resolution sensor. So, an alternative idea can be compensation in the electrical domain (voltage–charge). In fact, it can be demonstrated that hysteresis compensation in the electrical domain can simultaneously compensate the mechanical one. But, experimental results depict that voltage–charge relation may be time dependent due to low internal impedances. It would lead to “time-dependent hysteresis”. As a result, conventional models cannot be applied for hysteresis identification. In this paper, a modified time-dependent Prandtl–Ishlinskii model is proposed to identify the time-dependent hysteresis in low impedance actuators. Utilizing the proposed model, experimental results validate that the mechanical hysteresis would be appropriately compensated as a result of compensation in the electrical domain.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3