Pulsation suppression in a reciprocating compressor piping system using a two-tank element

Author:

Ma Quyang1,Wu Zhenhuan2,Yang Guoan1,Ming Yue1,Xu Zheng1

Affiliation:

1. College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing, China

2. College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, China

Abstract

Gas pulsations excited by reciprocating compressors could introduce severe vibrations and noise in piping systems. When pulsating gas flows through the reducers, the changes in flow characteristics, such as velocity and damping coefficient, will affect the pressure pulsations. To circumvent these constraints, a two-tank element is introduced to control the gas pulsation that is still strong in the piping system with a surge tank. Installing another surge tank to form a two-tank element is more flexible and costs lower than replacing the original surge tank with a larger one. In this work, a theoretical model based on the wave theory was proposed to study the transferring mechanism of gas pulsations in the pipeline with the two-tank element. By considering the damping coefficient and the Mach number, the distributions of the pressure pulsations were predicted by the theoretical model and agreed with the three-dimensional fluid dynamics transient analysis. Three experiments were conducted to prove that the suppression capability of the two-tank element is as good as that of a single-tank element (surge tank) with the same surge volume. The volume optimization of the two-tank element is implemented by selecting the best allocations of the two tanks’ volumes to achieve larger reductions of pressure pulsations. Assuming that the total surge volume is constant, we found that the smaller the volume of the front tank (near the cylinder) is, the lower the pulsation levels are. The optimized result proves that in some conditions the two-tank element could control pulsations better than the single-tank element with the same surge volume.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Vibration Suppression Mechanism of Pulsating Flow in Pipe with Tube Bundle Rectifier;Journal of Vibration Engineering & Technologies;2022-07-08

2. Analysis of Cylindrical Damper Effects on Turbine Meters Accuracy in a Pulsating CNG Suction Line: An Optimal Design through CFD Simulations;International Journal of Chemical Engineering;2022-04-18

3. Vibration Diagnosis and Treatment for a Scrubber System Connected to a Reciprocating Compressor;Journal of Sensors;2020-11-24

4. Attenuation of pulsations in the reciprocating compressor piping system with an elbow-shaped surge tank;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2018-05-14

5. Vibration analysis and control of a screw compressor outlet piping system;Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering;2018-03-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3