Characterization of MWCNTs-polystyrene nanocomposite based strain sensor

Author:

Singla Tarun1ORCID,Pal Singh Amrinder1,Kumar Suresh2,Singh Gagandeep1,Kumar Navin3

Affiliation:

1. Department of Mechanical Engineering, University Institute of Engineering and Technology, Panjab University, Chandigarh, India

2. Department of Applied Sciences, University Institute of Engineering and Technology, Panjab University, Chandigarh, India

3. Department of Mechanical Engineering, Indian Institute of Technology, Ropar, Punjab, India

Abstract

The usage of nano phase materials for strain sensing applications has attracted attention due to their unique electromechanical properties. The nanocomposite as piezo-resistive films provides an alternative for the realization of strain sensors with high sensitivity than the conventional sensors based on metal and semiconductor strain gauges. In this work, polymer based nano-composite with carbon nanotubes as filler were developed. The multi-walled carbon nanotubes/polystyrene (MWCNTs/PS) nano-composite films were prepared with different wt.% of CNTs using solution mixing method. Field emission scanning electron microscopy technique was carried out to investigate the morphology and dispersion of CNTs in the nano-composite sample. Fourier transform infrared spectroscopy technique was employed to characterize the bonds present in the prepared nano-composite. The electrical response of the composite films was recorded in the form of current-voltage (I-V) characteristics using source meter. The electromechanical response of the nano-composite films with different wt.% of filler CNTs was recorded by applying uni-axial tensile load. The electromechanical responses were then analyzed to obtain gauge factor for the strain sensitivity. The highest gauge factor of 133 was recorded during tensile testing of the nano-composite with 3 wt.% of CNTs fillers.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3