Analysis of mixed convection past a heated sphere

Author:

Nath Dipjyoti1,Pati Sukumar2,Raju B Hema Sundar1

Affiliation:

1. Department of Mathematics, National Institute of Technology, Silchar, Assam, India

2. Department of Mechanical Engineering, National Institute of Technology, Silchar, Assam, India

Abstract

The hydrodynamic and thermal characteristics for laminar axisymmetric mixed convection from a heated sphere are analyzed numerically in this work. The governing transport equations of conservation of mass, momentum, and energy have been solved using a higher order compact scheme. The results are presented in terms of the distribution of the streamlines, isotherms, and vorticity contours, and local Nusselt number along the sphere surface together with drag coefficient and average Nusselt number. We identify critical Richardson number above which separation of flow is suppressed. It is revealed that the drag coefficient decreases with an increase in the Reynolds number (Re) and the decrease is more profound for lower range of Re. It is further revealed that the drag coefficient increases monotonically with an increase in the Richardson number, while the same decreases with the increase in the Prandtl number. The average Nusselt number increases monotonically with the increase in Reynolds number, Prandtl number, and Richardson number.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3