Numerical analysis of heat dissipation from a heated vertical cylinder by natural convection

Author:

Singh Jashanpreet1,Singh Chanpreet1

Affiliation:

1. Department of Mechanical Engineering, Punjabi University, Patiala, India

Abstract

Natural convection heat transfer from a hot vertical hollow brass cylinder has been studied experimentally and numerically. The governing equations of continuity, momentum and energy are discretised by using an implicit finite difference technique. The velocity and temperature profiles, boundary layer thickness, local and average heat transfer coefficient are obtained using the numerical simulation. The predictions of the numerical simulation are compared with the experiments conducted on a laboratory-scale apparatus and with the results obtained from analytical solutions available in literature. The numerical simulation results are obtained for two fluids; air and water vapour whereas the experiments are conducted for air only. The induced flow is laminar in both the simulation and the experiments. The dependence of boundary layer thickness on Prandtl number is discussed. The numerically obtained Nusselt number is found quite close to the analytical one. The results show the heat dissipation from the cylinder to surrounding fluid is higher for air than for water vapour. The various factors that affect the comparison of the experimental results with the numerical simulation are discussed.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3