Design and thermal analysis of Fin-PCM-integrated thermal management system for lithium-ion cylindrical battery pack

Author:

Narkhede Swapnil1ORCID,Sur Anirban1ORCID,Kothari Gaurav1,Netke Ajit1

Affiliation:

1. Symbiosis Institute of Technology (SIT), Symbiosis International (Deemed University), Lavale, Pune, India

Abstract

A fin and phase-change material (PCM) integrated battery thermal management system (BTMS) for the 18650 cylindrical Li-ion battery is designed, analysed, and validated with experimental results. The performance of different cooling techniques such as natural air convection cooling, fin cooling, PCM cooling, and fin-PCM cooling is investigated for a single battery and a 14S1P battery pack and compared. A PCM-based BTMS is employed to absorb the heat from the battery, thereby lowering its temperature and maintaining its temperature uniformity. N-eicosane is used as a PCM for this study. It has a melting temperature of 308 K. Result shows at a 5C discharge rate. The PCM cooling system lowers the temperature by approximately 31 K, and the fin-PCM system lowers the battery temperature by 33 K compared to simple natural air convection cooling. The experimental results agree with the numerical simulations with an error below 1%. The results show that connecting batteries in series does not affect the heat generation and battery surface temperature.

Publisher

SAGE Publications

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3