Experimental evaluation of passive and active cooling methods for high-concentration photovoltaic systems using nanofluids

Author:

Dhairiyasamy Ratchagaraja1ORCID,Rajendran Silambarasan23ORCID

Affiliation:

1. Department of Electronics and Communication Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamilnadu, India

2. Department of Mechanical Engineering, Annapoorana Engineering College, Salem, Tamil Nadu, India

3. Centre for Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, India

Abstract

High-concentration photovoltaic (HCPV) systems require cooling methods to maintain cell efficiency. Passive fin heat sinks and active microchannel heat exchangers are potential cooling solutions. Nanofluids are an emerging coolant that could enhance heat transfer in microchannels. This work experimentally evaluated the performance of a fin heat sink and microchannel heat exchanger for cooling HCPV systems. The study also examined silver nanofluids at 0.0005–0.005 vol% concentrations in the microchannel heat exchanger. A small-scale HCPV system with the fin heat sink was built and tested outdoors under 500–1100 W/m2 solar irradiance. An experimental bench was constructed to evaluate the microchannel heat exchanger at 5–15 heat fluxes (W/cm2) and 25–35 °C inlet temperatures using water and a 50/50 water/ethylene glycol base fluid. Silver nanofluids increased heat transfer up to 20% but also increased pressure drop compared to base fluids. The fin heat sink achieved 2.5–3.0 °C/W thermal resistance, while the microchannel heat exchanger exhibited 0.5–1.5 °C/W, a 60–80% reduction. Microchannel cooling shows excellent potential for HCPV systems due to its low thermal resistance. Silver nanofluids increased heat transfer up to 20% but also increased pressure drop compared to base fluids. The pressure drop penalty ranged from 5–15% over the base fluid at the same flow rates. Silver nanofluids can enhance heat transfer but require optimization to balance thermal and hydraulic improvements.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3