Pulsating flow of electrically conducting couple stress nanofluid in a channel with ohmic dissipation and thermal radiation – Dynamics of blood

Author:

Somasundaram Rajamani1ORCID,Subramanyam Reddy Anala1ORCID

Affiliation:

1. Department of Mathematics, School of Advanced Sciences, VIT, India

Abstract

The present work discloses the magnetohydrodynamic pulsating flow of blood-carrying [Formula: see text] nanoparticles in a channel with the viscous dissipation and Joule heating effects. Couple stress fluid is treated as blood which is the base fluid. The Maxwell Garnett model for thermal conductivity of nanofluid is considered. The thermal radiation and heat source/sink impacts are taken into account. Analytical expressions for dimensionless flow variables are obtained by employing the perturbation method. The impact of active parameters on flow variables is graphically presented. The obtained results show that the velocity of nanofluid increases with an increment in frequency parameter, whereas it decreases for a rise in Hartmann number, nanoparticles volume fraction and couple stress parameter. There is an enhancement in temperature of nanofluid with increasing viscous dissipation, whereas there is a decrease in temperature with an increase in the applied magnetic field. The Nusselt number rises with an enhancement in volume fraction of nanoparticles and Hartmann number at both the walls. Further, the validity of present results is assured by the comparison of analytical and numerical outcomes with an excellent harmony.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3