Technology development for in-situ measurement of residual stress in arc welded joints of MDN 250 by portable Cosα X-ray diffraction method

Author:

Jose Bibin1,Manoharan Manikandan1ORCID,Natarajan Arivazhagan1ORCID

Affiliation:

1. School of Mechanical Engineering, Vellore Institute of Technology, Tamil Nadu, India

Abstract

Residual stresses are inherent stresses that exist in engineering components even though no external load is applied. They are caused by the non-uniform volumetric shift of the metallic component during manufacturing processes. Welding is a key manufacturing technique that has a substantial impact on the economy since it is required for the production of a diverse variety of products used in the engineering sector. The residual stress primarily affects the stability, durability and performance of the welded joints. Hence its determination is of utmost importance. X-ray diffraction (XRD) is the most commonly used method for residual stress analysis. There are mainly two approaches for measuring residual stress using XRD; one is the sin2ψ method and the other is the cosα method. The residual stress measurements using the cosα method are handy, quick and convenient compared to the sin2ψ method. This method is well suited for welded joints, as it provides flexibility for testing immediately after the welding operation. Apart from residual stress measurements, the cosα method also gives valuable insights in the form of Debye-Scherrer (DS) rings and full width at half maximum. The present study focuses on the development of a novel technique that not only enables residual stress measurement but also provides a quantitative estimation of hardness and qualitative estimation of grain size without performing metallurgical or mechanical characterization. The material used for the present study is an arc-welded joint of MDN 250 grade maraging steel. The residual stress results show a compressive profile throughout the weldment, with a maximum value of compressive residual stress of 428 MPa at the fusion zone.

Funder

Defence Research and Development Organisation

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3