Affiliation:
1. State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, PR China
2. Shanghai Tobacco Machinery Co., Ltd, Shanghai, PR China
Abstract
The zero-point positioning system (Z-PCS) is more suitable for the increasingly common production modes of multiple types, small batches, and changing conditions than to conventional fixtures. Currently, the Z-PCS cannot provide sufficient clamping force, and the design of the positioning structure is prone to over-positioning. The working principles of each functional module in the system are unclear, making it difficult to promote product design optimization and troubleshooting. This article aims to design a high-performance Z-PCS, revealing the structural composition and working principle of the system, including the clamping structure, positioning structure, and air circuitry arrangement. During the design process, the finite element numerical calculations were adopted to verify the mechanical properties of each key load-bearing component. Finally, the designed product underwent positioning accuracy and clamping force testing. The results indicate that the Z-PCS designed in this article can provide a clamping force of at least 73.7 kN and control the repetitive positioning error below 0.002 mm. Micro-deformation grooves can be adaptively added to compensate for the over-positioning error. Heat-treated martensitic-type stainless steel is an ideal material for constructing the body of a high-performance Z-PCS.
Funder
Opening Project of Zhejiang University of Technology Xinchang Research Institute