Investigations on laser-assisted turning of IN625 alloy with hot hardness approach using uncoated and CrAlSiN coated WC tools

Author:

Rao Amarendhar12ORCID,Tak Manish1,Rao Narasimha2ORCID,Vallleti Krishna1,Bathe Ravi1ORCID

Affiliation:

1. International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI), Hyderabad, India

2. Department of Mechanical Engineering, National Institute of Technology, Warangal, India

Abstract

This paper presents an investigation into the effect of laser-assisted turning of the IN625 superalloy using uncoated and CrAlSiN nanocomposite-coated tungsten carbide tools. A hot hardness test was conducted for IN625 material, which showed there was a pronounced softening of the material above 850 °C. This exercise guided the choice of laser power for the subsequent laser-assisted turning experiments. The cutting forces (radial/thrust, Fx; axial/feed, Fy; and tangential/cutting, Fz), maximum flank wear (VBBmax), and surface roughness ( Ra) were measured and analyzed for the planned experiments. The results demonstrated that at 2500 W laser power, a 9%, 70%, and 59% reduction of cutting forces for uncoated tools, and a 31%, 77%, and 69% reduction for CrAlSiN coated tools were observed in the Fx, Fy, and Fz directions respectively. At 2250 W laser power, the uncoated tools exhibited a 33% (433–289 µm) reduction in VBBmax and a 28% (1.8–1.3 µm) reduction in Ra. The CrAlSiN-coated tools, at 2500 W laser power, showed even more significant improvements, with reductions of 46% (365–232 µm) in VBBmax and 56% (1.4–0.8 µm) in Ra. The results underline the improved performance of laser-assisted turning for cutting-force and tool-wear reduction and improved surface finish with CrAlSiN-coated tools. This paper presents the potential of laser-assisted machining as a viable method for machining difficult-to-machine materials like IN625, which offers enormous manufacturing productivity and tool life benefits.

Funder

Department of Science and Technology, India

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3