A multi-objective optimization strategy based on combined meta-models: Application to a wind turbine

Author:

Boutemedjet Abdelwahid1,Khalfallah Smail2ORCID,Cerdoun Mahfoudh2ORCID,Benaouali Abdelkader3ORCID

Affiliation:

1. Laboratory of Fluid Mechanics, Ecole Militaire Polytechnique, Algiers, Algeria

2. Laboratory of Turbomachinery, Ecole Militaire Polytechnique, Algiers, Algeria

3. Mechanical Systems Design Laboratory, Ecole Militaire Polytechnique, Algiers, Algeria

Abstract

Many types of optimization problems involving expensive functions have been handled successfully by meta-model-based optimization (MBO) methods. However, some particular difficult problems, such as multimodal functions, which require an accurate approximation even around local optima, still prove challenging for MBO. Generally, this type of problems is solved by combining or assembling meta-models. This paper proposes a new strategy of combining a global meta-model with many mid-range ones. The latter are constructed on sub-regions where the global meta-model is inaccurate. These mid-range meta-models are constructed in two phases. The first phase aims to explore accurately all the design space; whereas the second phase aims to provide more accurate solutions than those of the global meta-model on regions of interest (exploitation). The set of sub-regions can be updated adaptively until reaching the meta-model target accuracy. This two phases’ adaptive process prevents the over sampling of non-interesting regions, which allows gaining significantly in the cost. The proposed strategy is tested using the following techniques: Radial basis function (RBF) and Non-dominated Sorting Genetic Algorithm (NSGA-II). This strategy is tested both on difficult mathematical benchmarks and on an engineering application giving satisfactory results. The considered engineering application aims to optimize the operation of a vertical axe wind turbine.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3