On electrochemical machining with an interelectrode slit for a partially insulating cathode

Author:

Singh Gurwinder1,Singh Rupinder1ORCID,Rao P Sudhakar1

Affiliation:

1. Department of Mechanical Engineering, National Institute of Technical Teachers Training and Research Chandigarh, Chandigarh, India

Abstract

Electrochemical machining is an established non-conventional machining process in which material removal during electrolysis relies on the quantity of electricity passed through the electrolyte. The amount of electricity passed further depends on several factors, such as electrochemical reactivity/dissolution, penetration rate, tool properties (profile, surface area, and material), electrical conductivity, chemical composition, temperature sensitivity, crystal structure, and initial surface roughness (Ra) of workpiece material, voltage, feed rate, electrolyte selection/concentration, etc. As per reported studies, a thermoplastic inter-electrode slit of rectangular/square profile between the tool and workpiece in modified electrochemical machining helps to generate the cavity with a better aspect (h/d) ratio without changing the tool profile. However, little has been reported on the effect of variation in interelectrode slit thickness on material removal rate/penetration rate. In this study, the results of experimental investigations for material removal rate/penetration rate with modified electrochemical machining using a square inter-electrode slit of variable thickness between the cathode (circular tool) and anode (workpiece) with 03 different materials (Al, Cu, and Ti) have been presented. Taguchi L18, orthogonal array-based design of experiments, has been used in parametric optimization of the modified electrochemical machining process. Overall, the best settings for material removal rate in modified electrochemical machining are electrolyte concentration 150 g/L, voltage 21 V, tool material Cu, workpiece Al, interelectrode slit thickness 1.5 mm, and tool feed rate 132 µm/min. The outcomes have been braced by scanning electron microscopy, energy dispersive spectroscopy, and Ra analysis.

Funder

Department of Science and Technology, Ministry of Science and Technology, India

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3