Mechanical characteristics of optimized alkali-treated Similax Zelanica/glass fiber/nanosilica composites in an epoxy matrix: An experimental investigation and numerical study

Author:

Sivakumar E1ORCID,Saju K K1

Affiliation:

1. Department of Mechanical Engineering, School of Engineering, Cochin University of Science and Technology, Kochi, India

Abstract

The demand for environmentally conscious materials has led the research on natural fiber composites as an alternative to synthetic materials in various industries. This study focuses on the optimization and preparation of alkali-treated Similax Zelanica/glass fiber and nanosilica-reinforced epoxy composites. The weight % of Similax Zelanica/glass and nanosilica was optimized using the grey relational analysis (GRA) multiparameter optimization technique and DOE of L9 orthogonal was used. Mechanical properties including tensile, flexural, impact, rock well hardness, and dynamic mechanical analysis were evaluated. Results indicate that increasing fiber volume fraction up to 30% enhances mechanical properties, with subsequent declines beyond this threshold. Tensile strength peaked at 30% fiber volume (75 MPa), while flexural strength also peaked at 30% substrate (140 MPa). The impact test showed a maximum of 1.84 kJ/m2 at 30% volume fraction. Maximum hardness of 85 RHN is observed for 30% S and 60% E specimens. Weibull distribution plots results, aligned well with the expected distribution pattern, indicating consistent and reliable mechanical behavior. Water absorption rates increase with fiber volume percentage increase, but optimal alkali treatment improves, absorption resistance to some extent. Dynamic mechanical analysis reveals reduced glass transition temperature Tg (97° C) for composite due to their better interaction nature between fiber/silica nanoparticles and matrix. Further characterization reveals thermal stability (374°C), crystalline properties (crystalline index: 56.87%, crystalline size: 21.23 nm), and functional group composition. Numerical analysis using ANSYS validates experimental results, giving confidence in repeatability. Scanning electron microscope analysis confirms good interfacial bonding, crack propagation details, and absence of impurities in the composite. These results like Mechanical properties, thermal stability, crystalline properties, and functional group composition of the composite confirm its suitability for various applications.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3