Effect of recycled asphalt waste on mechanical properties of alkali-activated mortars

Author:

Dokuzlar Gizem1,Dündar Behçet1,Yurt Ümit2ORCID

Affiliation:

1. Department of Civil Engineering, Osmaniye Korkut Ata University, Osmaniye, Türkiye

2. Department of Construction, Düzce University, Düzce, Türkiye

Abstract

In the next century, negative effects, such as an increase in temperature level, rise in sea level and decrease in forests and agricultural areas, are expected as a result of the harmful effects of global warming. The construction industry is among the main actors of global warming. Cement, the most used building material of the construction industry, is responsible for approximately 8% of CO2 emissions worldwide. Reducing the amount of cement production and using alternative materials and wastes can contribute to reducing CO2 emissions in the production of building materials. In this study, Alkali-Activated Mortar (AAM) mixtures which contain Ground Granulated Blast Furnace Slag (GGBFS) and Fly Ash (FA) were prepared. Recycled Asphalt Waste (RAW) is reduced to 0–4 mm size in order to use as fine aggregate in AAM mixes. Three different activation temperatures (40 °C, 80 °C and 120 °C) were applied for 18 h in order to examine the effect of activation temperature on the prepared AAM samples. After the application of activation temperature, the samples were kept in the standard curing pool for 7 and 28 days. After curing, physical and mechanical experiments were carried out on AAM samples. Water absorption and porosity, compressive strength and electrical resistivity tests were performed on the hardened samples. In addition, the acid effect on the samples was investigated comparatively with the changes in mechanical and physical properties. As a result, the study, in which high-strength mortar mixtures were obtained, shows promising results in terms of sustainable environmentalism. The compressive strength value of 45.74 MPa was found in the mortar mixtures produced using RAW. In addition, it was concluded that the optimum activation temperature is an important parameter of compressive strength and acid resistance.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3