Optimization of gas metal arc welding parameters for dissimilar steel welds: A case study on duplex stainless steel 2205 and stainless steel 316L

Author:

Sengottaiyan Veerakumar1ORCID,Kasilingam Krishnamurthy2,Balasubramaniam Meenakshipriya2,Munimathan Arunkumar3ORCID

Affiliation:

1. Department of Mechanical Engineering, Sri Ramakrishna Institute of Technology, Coimbatore, India

2. Department of Mechatronics Engineering, Kongu Engineering College, Erode, India

3. Department of Mechatronics Engineering, Hindusthan College of Engineering and Technology, Coimbatore, India

Abstract

The significance of welded connections in steel structures necessitates precise structural designs and processing adaptations to ensure robust mechanical strength and durability. Gas metal arc welding (GMAW) employing controlled curves presents advantages over conventional methods, offering enhanced weld bead properties, improved aesthetics, and reduced thermal inputs. This research investigates the impact of GMAW parameters using controlled curves on the microstructure and geometry of welds between dissimilar structural steels—duplex stainless steel 2205 and stainless steel 316L grade 50—commonly employed in construction. The aim is to optimize the GMAW welding process with controlled curves and surface tension transfer between these dissimilar steels. Through a 23-factorial experimental design encompassing feed speed (Va), arc focus (FC), and peak-to-base amplitude (APB), the study examines welding energy, geometry, deposition efficiency, microstructure, microhardness, tensile strength, and corrosion properties. Optimal welding energy fosters refined microstructures and uniform hardness, aiding in predicting weld throat area. Higher energy levels expand the heat-affected zone and coarse grains, while lower energies escalate variability. Predictive models facilitate fine-tuning welding energy and throat area for desirable properties and penetration while minimizing disruptions. This process optimization can be achieved by employing derived equations that limit welding energy and curve parameters, striking a desired balance between cost, structural integrity, and reliability.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3