Study of optimum welding performance in friction stir welding of dissimilar Mg alloys using integrated RSM-TLBO algorithm

Author:

Singh Umesh Kumar1,Dubey Avanish Kumar1ORCID

Affiliation:

1. Mechanical Engineering Department, MNNIT Allahabad, Prayagraj, UP, India

Abstract

Lightweight with excellent strength of magnesium alloys has attracted its use in transportation industries but difficulty in fusion welding of magnesium alloys restricts its application. The present research investigates solid state friction stir welding of dissimilar AZ31-AZ91 magnesium alloys with aim to achieve optimum quality welds. Surface roughness, microstructure and mechanical properties of these joints have been investigated at different tool rotational speed, welding speed and tool shoulder diameter. Maximum joint strength obtained is 89.71% (as compare to AZ31) which is more than the previously reported joint strengths of dissimilar magnesium alloys. Further, mathematical relations for responses have been developed and utilised for multi-objective optimization using teaching-learning-based optimization algorithm. Eventually, teaching-learning-based optimization algorithm results suggest that the optimum value of surface roughness (3.3925 µm), grain size (12.6869 µm), tensile strength (237.9621 MPa), microhardness (69.3652 Hv) and flexural strength (333.2285 MPa) can be achieved at 921 rpm rotational speed, 30 mm/min welding speed and 15 mm shoulder diameter with overall improvement in multiple responses.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3