Dodecyl methacrylate (DM) dispersion-assisted surface modification approach for increasing crystallinity of coir fibers

Author:

Nag Mukesh Kumar1ORCID,Shrivastava Abhishek2ORCID

Affiliation:

1. Mechanical Engineering Department, National Institute of Technology Jamshedpur, Jharkhand, India

2. School of Mechanical Engineering, VIT Bhopal University, Sehore, M.P, India

Abstract

Coir fiber crystallinity is crucial since it widens the range of possible uses for natural fiber. To increase the crystallinity of coir fiber, the study describes an easy-to-use, simple-to-implement method that is cost-effective, eco-friendly, and highly productive. With the help of dodecyl methacrylate disperson, hydrocarbon molecules of varying chain lengths are covalently attached to the surface of coir fibers, modulating their surface wettability. There are a few different long-chain hydrocarbon compounds employed, including n-butyl methacrylate, n-octyl acrylate, and dodecyl methacrylate (DM), but DM has shown to be the most effective. The degree of grafting yield alteration is determined gravimetrically. It has been found that grafting yields of 28–30 wt.% can be used to convert hydrophilic coir fibers into water repellent crystalline fibers (water contact angle 148°). A total of 15 nm of dispersion, a disperson rate of 2 nm/min, DM concentration of 20%, and water content of 10% are fixed as key reaction parameters. Thermal and mechanical analyses show no significant changes in the fiber structure during alteration. The grafting and changes in surface wettability are well supported by the surface morphology of pure and modified coir fiber, which can be seen using scanning electron microscopy.

Publisher

SAGE Publications

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3