Experimental studies on direct expansion solar thermal heat pump systems using R430A as a substitute to R134a

Author:

Mohanraj M12ORCID,Kartheheyan I M1

Affiliation:

1. Department of Mechanical Engineering, Hindusthan College of Engineering and Technology, Coimbatore, India

2. Heat Pump Research Institute, Coimbatore, India

Abstract

The use of halogen-based refrigerants in heat pump applications is restricted because of their high global warming potential (GWP). Therefore, it is necessary to identify a low GWP substitute for heat pump applications. This article presents the energy performance of a direct expansion solar thermal heat pump system (DXSTHPS) using R430A as an environmentally friendly substitute to phase out R134a. The effects of ambient parameters on compressor discharge temperature, compressor energy consumption, condenser heating capacity and coefficient of performance (COP) of a DXSTHPS using R134a and R430A are estimated and compared. Moreover, the total equivalent global warming impacts (TEGWI) of a DXSTHPS using R134a and R430A are evaluated. The results showed that the R430A has 0.7–1.9% lower compressor energy consumption than R134a. The condenser heating capacity and COP of a DXSTHPS using R430A are higher than R134a by 4.6–8.7% and 5.1–10.2%, respectively. The compressor discharge temperature observed in a DXSTHPS using R430A is 5.8 °C higher than R134a. The lubricant physical properties are retained at higher compressor operating temperatures, ensuring compressor reliability. The DXSTHPS using R430A has 4.2–12.9% lower TEGWI due to its lower GWP with lower compressor energy consumption than R134a.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A comparative study of solar photovoltaic operated milk cooler for realizing the need for load management and starting circuits;Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering;2022-10-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3