Process-structure-property studies on synergetic effect of contact and non-contact ultrasonication in AA5083-based bulk nanocomposite

Author:

Vishwanatha HM1ORCID,Jayakumar Eravelly2,Ghosh Sudipto2,Siva Kumar Cheruvu3

Affiliation:

1. Department of Mechanical and Industrial Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India

2. Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Kharagpur, West Bengal, India

3. Department of Mechanical Engineering, Indian Institute of Technology, Kharagpur, West Bengal, India

Abstract

High strength-to-weight ratio materials such as Al- and Mg-based nanocomposites have gained growing interest in engineering applications for aerospace, automotive, marine, energy, and military. This unabated demand can be met with the advent in materials science and processing technologies. The current study demonstrates a recently developed the technique that consists of the synergetic effect of contact and non-contact ultrasonication of liquid melt for dispersing nano-sized Al2O3 reinforcements in AA5083 alloy matrix. The work is primarily focused on the effects of two-step ultrasonication on wettability, dispersion of the nano-reinforcements in the AA5083 alloy matrix, and the resultant strengthening. The resultant is the AA5083–1 wt-% Al2O3 bulk nanocomposite, a high strength-to-weight ratio material. The extensive microstructure analysis comprising scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy dispersive X-ray spectroscopy (EDS) mappings reveals the uniform dispersion of nano-particles in different phases of the matrix. The electron back scattered diffraction (EBSD) studies confirm the grain refinement while the X-ray diffraction (XRD) identifies the various phases formed are determined using XRD. The achieved uniform dispersion in the nanocomposite is explicated based on the enhanced wettability due to the presence of Mg in the alloy, preheating of nano-particles, and the synergetic effect of contact and non-contact ultrasonication that avoids the formation of zones of lower cooling rates resulting in powerful micro-convection. The resultant enhancement in the mechanical properties is explained based on available strengthening mechanisms. A comprehensive discussion on process-structure-property correlation has been presented.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multi-source energy harvesting technology using piezoelectric and thermoelectric materials;Energy Harvesting and Storage: Materials, Devices, and Applications XIV;2024-06-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3