A mathematical model for the estimation of hardness of electrochemical deposits

Author:

Kumar Varun S1,Sundaram Murali1

Affiliation:

1. Department of Mechanical and Materials Engineering, University of Cincinnati, Cincinnati, OH, USA

Abstract

Binding of metal powders using electrochemically deposited binders provides a novel way of carrying metal additive manufacturing at ambient temperatures. In this paper, a mathematical model was developed to predict the hardness and the yield strength of electrochemically bound parts. In this work, an existing composite hardness model is modified to predict the deposit hardness. Experimental verification of the model was performed using brass and aluminum substrates with nickel as the binder under similar deposition parameters to verify that substrate effects were not involved in the measured hardness value. The film hardness values were then compared for deposits on both brass and aluminum substrates. The model was able to predict the hardness values on both substrates within 8% of each other thereby eliminating the substrate effects involved.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Coupled thermomechanical finite element analysis of ultrasonic hot embossing process;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2024-05-29

2. A detailed analysis of the MAO TiO2 coating hardness using the Jönsson and Hogmark “law-of-mixtures” model;Materials Letters;2023-12

3. Electrochemical Deposition of Micro- and Nanostructures of Any Shape;Chemické listy;2023-09-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3