Thermophysical and transient heat transfer characteristics of aqueous SiO2 nanofluid in energy management applications

Author:

Mukherjee Sayantan1ORCID,Panda Smita Rani1,Mishra Purna Chandra1ORCID,Sen Swarnendu2,Chaudhuri Paritosh34

Affiliation:

1. Thermal Research Laboratory (TRL), School of Mechanical Engineering, Kalinga Institute of Industrial Technology (Deemed to be University), Bhubaneswar, Odisha, India

2. Department of Mechanical Engineering, Jadavpur University, Kolkata, India

3. Institute for Plasma Research (IPR), Gandhinagar, Gujarat, India

4. Homi Bhabha National Institute, Mumbai, Maharashtra, India

Abstract

The development and implementation of transient heat transfer characteristics of nanofluids in energy management were studied. Ultrasonic-assisted SiO2/water nanofluids with 0.1–1.5 wt. % were prepared using polyvinyl alcohol (PVA) surfactant. The stability of nanofluids was tested and confirmed using zeta potential and light absorbance measurement. Thermophysical properties of nanofluid were investigated at various weight concentrations from 0.1 to 1.5 wt. % in a temperature range of 25–70°C. Transient heat transfer characteristics of nanofluids were examined. Thermophysical properties were enhanced by adding nanoparticles to base fluid. A major enhancement in transient heat transfer characteristics was obtained by applying SiO2/water nanofluids. The convective heat transfer coefficient (CHTC) was increased up to 2.37 times compared to water. The heat absorbance efficiency of the system is increased by a maximum of 24.54%. Finally, a new CHTC correlation has been proposed.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3