Modeling of a dry low nitrogen oxides burner using a three-dimensional computational fluid dynamics simulation

Author:

Sun Guodong1ORCID,Duan Xuejing1,Hao Bo2,Davarpanah Afshin3ORCID

Affiliation:

1. Mechanical and Electronic Engineering Department, Weihai Ocean Vocational College, China

2. College of Mechanical Engineering, Northeastern University, China

3. Department of Petroleum Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran

Abstract

Nitrogen oxides are considered as one of the greenhouse gases. Among the most significant emission sources for this gas is a natural gas-fired power plant. The United Nations General assembly suggested in 1988 that human activities can negatively impact weather patterns, and thus they should be controlled. This control policy can improve the efficiency of final consumers such as power plants, cars, or other energy-intensive industries. In this paper, the existing strategies and explicitly making the dry low nitrogen oxides burner reduce greenhouse gases in power plants are explored. The geometry of the burner has been produced in a three-dimensional form in GAMBIT software, and the results of the simulation have been expressed through FLUENT software. Contours of pressure, temperature, and velocity of the fluid in the furnace are also derived. It is concluded that the dry low nitrogen oxides burners plan has a better result compared with other strategies.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3