An investigation of optimum control of injection timing/injection pressure for a multicylinder common rail direct injection engine fueled with AB20 blend

Author:

Singh Mandeep1ORCID,Kumar Prem1ORCID,Sandhu Sarbjot Singh1

Affiliation:

1. Department of Mechanical Engineering, Dr B R Ambedkar National Institute of Technology, Jalandhar, Punjab, India

Abstract

A multicylinder turbocharged common rail direct injection engine was tested at part load (62.4 Nm) and high load (156 Nm) to determine the optimum combination of injection pressure (IP) and injection timing (IT) for AB20 blended fuel. IP and IT were varied from default settings, that is, 9.2° before top dead center (BTDC), 45 MPa at part load; 9.8° BTDC, 95 MPa at high load, as specified in the calibration map of the engine. As a result of the experimental results, brake thermal efficiency (BTE) increased up to 5.36% when IP increased from 35 MPa to 45 MPa and 0.72% when IP increased from 45 MPa to 55 MPa under the part load condition. At high load, the maximum BTE of 38.22% was attained at 105 MPa IP and 9.8° BTDC IT. At this condition, nitrogen oxide (NOx) emission was noted as 1353 ppm, which is 12.28% higher than the NOx noted for diesel fuel at the default IP and IT conditions. When IP increases from 35 to 55 MPa at part load and 85–105 MPa at high load, cylinder pressure, heat release rate, and rate of pressure rise increase at all tested ITs. At high load, the condition of retarded IT (8.8° BTDC) and default IP (95 MPa) shows (a) 2.35% higher BTE and (b) almost similar NOx and improved HC, CO, and smoke emissions for the AB20 blend. Moreover, at the same experimental conditions, premixed heat release for the AB20 blend was noted to be 70.16 J/Deg./C.A, with heat release rate peak at 6° ATDC.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3