Comparative analysis of transient valve-induced flow characteristics between opening and closing processes

Author:

Liu Qi1,Tian Shuai1,Wang Yong-xiang1,Lin Zhe1ORCID,Zhu Zu-chao1ORCID

Affiliation:

1. Key Laboratory of Fluid transmission Technology of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China

Abstract

Transient control of process valves, including opening and closing processes, is consistently encountered in many fluid transportation and control industries. During opening and closing processes, valve-induced transient flow presents different unstable flow characteristics. This transient valve-induced unstable flow that develops along the pipeline can cause violent pressure and velocity fluctuations that considerably influence accurate flow measurement downstream. In this paper, gate valve-induced flow characteristics during opening and closing processes were comparatively studied. An experimental system was developed to monitor the downstream pressure along the pipeline, and corresponding transient numerical simulations were performed on opening and closing processes using a user-defined function and dynamic grid technology. The pressure distributions along the pipeline's downstream area during valve opening and closing processes were investigated to verify the accuracy of the numerical simulation. The mechanism of transient flow difference under the same valve opening during opening and closing processes was determined to be a hysteresis effect. The jet flow intensity under a small valve opening in the opening process was greater than that in the closing process, and the difference in flow field under the 50% valve opening was the largest. Moreover, the velocity and turbulent kinetic energy distributions in different downstream cross-sections during valve opening and closing processes were comparatively analyzed. The change rate of the maximum turbulent kinetic energy was introduced to further analyze the different effects of opening and closing processes on the transient flow stability downstream of the valve. Results showed that the flow stability between 40% and 50% valve opening was the worst irrespective of the adjustment process, that is, a large pipeline distance was required to stabilize this transient flow. This study helps in understanding transient valve-induced flow characteristics in fluid transportation pipelines and provides guidance for accurate flow metering industrial applications.

Funder

Top-notch Talent Support Program of Zhejiang Province

National Natural Science Foundation of China

Key Research and Development Program of Zhejiang Province

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Study on the effect of structural parameters of the convergence flow conditioner on eccentric jet flow rectification;Transactions of the Institute of Measurement and Control;2023-07-12

2. Research on internal flow characteristics of the labyrinth disc regulating valve;Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering;2023-03-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3