Multi-physics simulation of in situ microwave casting of 7039 Al alloy inside different applicators and cast microstructure

Author:

Mishra Radha Raman1,Sharma Apurbba Kumar1

Affiliation:

1. Microwave Materials Processing Laboratory, Department of Mechanical and Industrial Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India

Abstract

In the present study, finite element models of three different applicators (A1, A2, and A3) having different power densities were developed to study melting of the charge and solidification of the melt during in situ microwave casting. Multi-physics simulations were carried out to understand the effect of applicator specific processing conditions on the distribution of electric field inside the cavities at 2.45 GHz for Al 7039 alloy as charge. The alloy was cast inside the selected applicators and the mold temperature was monitored. The experimental results showed reasonable agreement with the simulation data. Simulation results revealed that the distribution of electromagnetic field inside A3 offers the lowest melting time of the charge (141% less than A1); however, it also caused the highest preheating of the graphite mold with respect to A1 (30% higher) and A2 (25% higher). It was found that the applicator-specific solidification conditions affect grain structure, intermetallic precipitation, and their distribution inside the casts. Coarser intermetallic phases (57 µm) and grains (97 ± 54 µm) were present in the Cast 3 developed using A3 due to higher preheating of the mold and slower cooling rate of the melt as compared to that in A1 and A2.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3