Geometric modeling and performance analysis of a combined algebraic spiral scroll compressor

Author:

Liao Zhixiang1ORCID,Peng Bin1,Zhang Pengcheng1,Sun Jian1,Zhu Bingguo1

Affiliation:

1. School of Mechanical and Electrical Engineering, Lanzhou University of Technology, Lanzhou, China

Abstract

This study proposed a combined algebraic spiral (CAS) scroll compressor with a profile that consists of two algebraic spirals with different parameters smoothly connected by a higher-order curve. The advantage lies in the ability of the ending algebraic spiral to regulate the stroke volume and wrap size, while the starting algebraic spiral can control the discharge volume and the center part of the wrap, thus improving the geometric performance of the scroll compressor. The research established the geometric model of CAS scroll wrap and conducted parametric studies. The results indicate that CAS scroll compressor exhibits the minimum discharge volume, maximum stroke volume, and compression ratio when both the discharge volume chamber and the stroke volume chamber are entirely constructed using the algebraic spiral. Moreover, it was observed that the radial leakage curve length decreases as the polar angle at the connection point increases. Under identical wrap diameters and adequate minimum wall thickness, a larger spiral coefficient may be chosen for the ending algebraic spiral in order to enhance geometric performance. Conversely, a smaller spiral coefficient and spiral index for the starting algebraic spiral can improve compression and reduce leakage. Moreover, in comparison to a single algebraic spiral scroll compressor with an equivalent wrap size, CAS scroll compressor exhibits a 20.62% decrease in discharge volume, a 31.62% rise in compression ratio, a 30.75% reduction in radial leakage curve length, and superior geometric performance when compared to other algebraic spiral scroll compressors.

Funder

Excellent Doctoral Student Program of Gansu Province

National Key Research and Development Program of China

Science and Technology Program of Gansu Province

Natural Science Foundation of Gansu Province

National Natural Science Foundation of China

Talent Innovation and Entrepreneurship Program of Lanzhou

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3