Exploring the effect of bio-silica on the mechanical, microstructural, and corrosion properties of aluminium metal matrix composites

Author:

Periasamy K.1,Prathap P.2,Arunnath A.3,Madhu S.4ORCID

Affiliation:

1. Department of Mechanical Engineering, Kongunadu College of Engineering and Technology, Trichy, Tamil Nādu, India

2. Department of Mechanical Engineering, Sri Krishna College of Technology, Coimbatore, Tamil Nādu, India

3. Department of Mechanical Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Chennai, Tamil Nādu, India

4. Department of Automobile Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nādu, India

Abstract

The role of silica in the aluminium alloy is to enhance its mechanical properties. Silica is an eco-friendly material that lowers the melting temperature which in turn enhances the fluidity of alloys. Low-cost synthesis, abundant natural resources, and mass production are other merits of silicon. In this investigation, plant-based bio-silica particles were incorporated in aluminium 7075 hybrid composites. The rice husk is rich in silica, and when it is burned or processed, it turns into ash, known as rice husk ash (RHA). After purification, the silica in RHA can be extracted using alkali fusion. Stir casting processes were used to fabricate hybrid composite material. Aluminium 7075 hybrid composites reinforced with different wt.% (0, 3, 6, and 9) of bio-silica extracted from rice husk were fabricated. Mechanical properties such as tensile, hardness, and impact were evaluated. Also, corrosion resistance was studied for the fabricated composites. The samples with different proportional values such as AlB (Al7075), AlBS1 (97 wt. % Al7075 + 3 wt. % bio-silica), AlBS2 (94% Al7075 + 6 wt. % bio-silica), and AlBS3 (91 wt. % Al7075 + 9 wt. % bio-silica) were fabricated by the stir casting process. Detailed microstructure characterization has been investigated using scanning electron microscopy (SEM). AlBS3 hybrid composites demonstrate a notable enhancement of 303.66 Mpa tensile strength and we observed a remarkable 10% increase in ductility compared to other composites. It was noticed that the sample AlBS3 shows an increased hardness of 162.4 HV and an impact energy of 26.67 kJ/mm2 due to the increased number of bio-silica particles. SEM-based fractography analysis of tensile and impact test specimens revealed the presence of dimples, cleavage facets, and intergranular cracks offering valuable insights into the failure mode.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3