Affiliation:
1. Additive Manufacturing Research Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Jammu, Jammu, India
2. Gas Turbine Research Establishment, Defense Research and Development Organization, Karnataka, India
Abstract
This paper investigates the tensile behaviour of Laser powder bed fusion (LPBF) processed Ti6Al4 V samples under three build orientations. The effect of microstructural changes from the post-heat treatments (PHTs – 850 °C, 950 °C 1050 °C) was assessed. The microstructural characterization was performed using optical microscopy, X-ray diffraction, and SEM techniques. The tensile tests were performed using a uniaxial universal testing machine (UTM). The fractal dimension analysis was performed on the fractured surfaces using ImageJ software integrated with an open-source MultiFrac plug-in. The PHT at a higher temperature (i.e., 1050 °C) induces a higher amount of β phase than the other PHTs. The PHT performed at 1050 °C exhibited α-Widmanstatten microstructure consisting of elongated β and a small amount of α. The PHT induces an isotropic behaviour in the LPBF-processed samples. However, the ductility of specimens subjected to PHT at 1050 °C showed ∼ 67%, 40%, and 177% improvement under horizontal (0°), inclined (45°), and vertical (90°) orientations than as-printed samples. Further fractal dimension analysis corroborates well with the ductility values of PHT samples. Therefore, the combination of fractography analysis and fractal dimension approach can be a promising methodology towards fractured surface characterization of additively manufactured metal parts.
Subject
Industrial and Manufacturing Engineering,Mechanical Engineering