Comparison of response surface methodology with artificial neural network for prediction of the tensile properties of friction stir-processed surface composites

Author:

Butola Ravi1ORCID,Singari Ranganath M.1ORCID,Murtaza Qasim1,Tyagi Lakshay1

Affiliation:

1. Department of Mechanical Engineering, Delhi Technological University, India

Abstract

In the present work, nanoboron carbide is integrated in the aluminum matrix using friction stir processing: by varying process parameters, that is, tool pin profile, tool rotational speed and tool traverse speed, based on Taguchi L16 design of experiment. A self-assembled monolayer is successfully developed on the substrate to homogeneously and uniformly distribute the reinforcement particles. Response surface methodology and artificial neural network models are developed using ultimate tensile strength and total elongation as responses. Percentage absolute error between the experimental and predicted values of ultimate tensile strength and total elongation for the response surface methodology model is 3.537 and 2.865, respectively, and for artificial neural network is 2.788 and 2.578, respectively. For both the developed models experimental and forecasted values are in close approximation. The artificial neural network model showed slightly better predictive capacity compared to the response surface methodology model. From the scanning electron microscopy micrograph, it is evident that throughout the matrix B4C reinforcement particles are well distributed also; with increasing tool rotational speed grain size decreases up to 1200 r/min; on further increasing the tool rotational speed particles starts clustering.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3