Entropy generation on EMHD Darcy-Forchheimer flow of Carreau hybrid nanofluid over a permeable rotating disk with radiation and heat generation: Homotopy perturbation solution

Author:

Ramasekhar Gunisetty1,Reddy P. Bala Anki1ORCID

Affiliation:

1. Department of Mathematics, S.A.S., Vellore Institute of Technology (VIT), Vellore, India

Abstract

The intention of this article is to explore the entropy generation of the Carreau hybrid nanofluid in a permeable rotating disk in the presence of thermal radiation, heat generation, and viscous dissipation. By applying the self-similarity variables, the partial differential equations are converted into ordinary differential equations and then the homotopy perturbation method is performed. Graphene oxide (Go) and Silver (Ag) are nanoparticles and kerosene oil as a base fluid is considered. Compared to the numerical technique (Runge-Kutta method), the homotopy perturbation method generates more precise and dependable results. The influence of sundry parameters is exhibited graphically for velocity, temperature, entropy generation, Bejan number, skin friction coefficient, and Nusselt number. The higher values of the Weissenberg number enhance the velocity profile and the opposite nature is observed in the porosity parameter. The entropy generation increases for larger values of the thermal radiation and electric field parameters. Carreau nanofluid expands under higher stress on the surface of the wall than Newtonian fluid. This type of problem would be used for electric devices and solar thermal systems. Moreover, the selected nanoparticles Graphene oxide and Silver play an important role in the biofunctionalization of protein, antibacterial, and anticancer therapy.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3