Multi-objective optimization of alloying elements to enhance the wear resistance and impact strength of HCCI produced by furan sand mold

Author:

Dhayaneethi S1ORCID,Anburaj J2,Arivazhagan S3ORCID

Affiliation:

1. Department of Automobile Engineering, Bannari Amman Institute of Technology, Sathy, Tamilnadu, India

2. Department of Metallurgical Engineering, PSG College of Technology, Coimbatore, Tamilnadu, India

3. Department of Mechanical Engineering, KPR Institute of Engineering & Technology, Coimbatore, Tamilnadu, India

Abstract

High Chromium White Cast Iron (HCWCI) plays a major role in manufacturing of wear-resistant components. Due to unique wear resistance property, attribution to the additions of carbide forming elements, they have been used for mill liner applications. By varying the wt% of alloying elements such as Cr, Ti, and Mo, the wear resistance and impact strength of High Chromium Cast Iron (HCCI) can be increased. To enhance the wear resistance property according to Central Composite Design (CCD), 16 samples were fabricated by varying the wt% of alloying elements. To fabricate the samples, furan sand molds were prepared and used for the further casting process. The properties of Furan sand mold enhance the mechanical properties and reduce the mold rejection rate, production time, etc. To attain the optimum Wear Rate (WR) and Impact Strength (IS) value without dominance, optimization techniques such as Response Surface Methodological (RSM) and Particle swarm optimization (PSO) are employed to solve the multi-objective problem. The RSM and PSO predicted optimum solutions are compared by using the Weighted Aggregated Sum Product Assessment (WASPAS) ranking method. The WASPAS result revealed that when compared to the RSM result, the PSO predicted optimal wt% of chemical composition (22 wt % Cr, 3 wt % Ti, and 2.99 wt % Mo) gives the optimum WR value (53 mm3/min) and IS value (3.77 J). To validate the PSO result, experiments were carried out for the predicted wt% of alloying elements and tested. The difference between the PSO predicted result and experimental result is less than 5% error which clearly shows that PSO is an effective method to solve the multi-objective problem.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3