Influence of melting heat transfer and chemical reaction on the flow of non-Newtonian nanofluid with Brownian motion: Advancement in mechanical engineering

Author:

Majeed Aaqib1ORCID,Zeeshan Ahmad2,Jawad Muhammad1ORCID,Alhodaly Mohammed Sh.3

Affiliation:

1. Department of Mathematics, The University of Faisalabad, Faisalabad, Pakistan

2. Department of Mathematics and Statistics, FBAS H-10, IIUI, Islamabad, Pakistan

3. Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia

Abstract

The aim of the present study is to investigate the melting heat and mass transport characteristics on the stagnation point flow of Powell–Eyring nanofluid over a stretchable surface because melting is so important in many processes, such as Permafrost melting, magma solidification, and thawing of frozen grounds, are all examples of soil melting and freezing around the heat exchanger coils of a ground-based pump. The developing mathematical model under the boundary layer flow in terms of differential equations is solved through a numerical algorithm using a boundary value problem solver bvp4c/shooting technique with the help of MATLAB software. The impact of emerging parameters on the velocity profile, temperature profile, and concentration profile is elaborated graphically. The profile and boundary-layer width rate for the value stretching parameter less than one rises when A enhances while the thickness of boundary layer velocity profile for the value stretching parameter greater than one decreases as A. The velocity function shows a decrement response for M, while the opposite behavior is seen against the concentration field. Furthermore, the numeric data for the friction factor and Nusselt number are demonstrated in tabular form, and the result shows a remarkable agreement with the previously published data.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3