Analytical model for material removal rate in rotary tool micro-ultrasonic machining of hard and brittle materials

Author:

Kumar Sandeep1ORCID,Dvivedi Akshay2,Rakurty CS3ORCID,Tiwari Tanmay4ORCID,Tewari Maneesh1

Affiliation:

1. Industrial and Production Engineering Department, College of Technology, G.B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India

2. Advanced Manufacturing Processes Laboratory, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India

3. The M. K. Morse Company, Canton, OH, USA

4. The Center for Precision Manufacturing (CPM), Department of Mechanical Engineering, The University of Akron, Akron, OH, USA

Abstract

The rotary tool micro-ultrasonic machining (RT-MUSM) process is a newly developed variant of conventional micro-USM. It is preferred over conventional micro-USM due to its ability to remove material at a faster rate and with better accuracy than the machined microfeatures. Some experimental investigations have been conducted on the RT-MUSM process for the machining of hard and brittle materials. However, the theoretical model of the material removal rate (MRR) for the RT-MUSM process has not been discussed in the literature. Thus, the present research work reports on developing a predictive model of the MRR for the RT-MUSM process during glass machining. Pure brittle fracture mode was considered to be the material removal mechanism during the model's development. The developed model was verified through experiments. The estimated results were compared with the experimental results and found to be in good agreement with each other. Additionally, statistical analysis was carried out for the prediction accuracy of the developed model. The results revealed that the model is adequate, with a correlation coefficient of 0.9976 and a mean absolute percentage error of 2.45%. Hence, the developed model can be used to estimate the MRR for the RT-MUSM process of hard and brittle materials such as ceramics.

Funder

Science and Research Engineering Board (SERB), Department of Science and Technology (DST), Government of India

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3