Multi-response optimization of friction stir welding process of dissimilar AA3003-H12 and C12200-H01 alloys using full factorial method

Author:

Shinde Gurunath V12ORCID,Arakerimath Rachayya R1

Affiliation:

1. Mechanical Engineering Department, G.H. Raisoni College of Engineering and Management, Pune, India

2. Mechanical Engineering Department, Dr. Daulatrao Aher College of Engineering, Karad, India

Abstract

In current research work, an attempt has been made to join dissimilar metals by employing friction stir welding (FSW), i.e., AA3003-H12 (aluminium alloy) and C12200-H01 (copper alloy). The experiments are designed as per full factorial design at different process parameters, namely tool pin profiles, rotational speed, welding speed, and shoulder diameter while the ultimate tensile strength (UTS), yield strength (YS), and percentage elongation (% E) are considered as a performance parameter. Moreover, a statistical tool, i.e., analysis of variance (ANOVA) is also utilized to check the adequacy of the results. It is observed that the higher UTS, % E and YS are obtained by employing a taper pin profile tool at a rotational speed of 1800 rpm, a welding speed of 16 mm/min, and a shoulder diameter of 22.5 mm. The ANOVA results showed that the rotational speed is the most significant factor for current research work. In addition, a scanning electron microscope is utilized for microstructural analysis of welded joints. It is witnessed that the minimum grain size, i.e., 4 microns, is obtained for highest strength specimen and the maximum grain size is obtained for the lowest strength specimen i.e., 31 microns. Besides this, the swirling of cu particle is also observed from advancing side (AS) to the retreating side (RS). Moreover, energy-dispersive X-ray spectroscopy (EDS) indicates the formation of intermetallic compounds i.e. Al2Cu, Al9Cu4 at nugget zone (NZ). The hardness is found to be higher at NZ due to the presence of Al-Cu intermetallic.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3