Nonlinear vibration analysis of forced response for rubbing problems using the automatic differential frame

Author:

Liu Tianyuan1,Sun Lei1,Xie Yonghui1ORCID

Affiliation:

1. School of Energy and Power Engineering, Xi’an Jiaotong University, China

Abstract

The multi-harmonic balance method is widely applied to obtain the forced responses of nonlinear systems undergoing rubbing problems. Despite large-scale time savings compared with the time marching method, it suffers from the complicated derivations of the Jacobian matrix. To solve this problem, this paper focuses on applying the automatic differentiation frame to the multi-harmonic balance method to implement the nonlinear vibration analysis of systems subjected to the rub phenomena. By establishing computational graph and utilizing the automatic differentiation process, tedious works such as the derivations of the complicated analytical expressions of the Jacobian matrix are avoided, which guarantees the efficiency and applicability of the presented method. A single-degree-of-freedom system with nonlinear force in the form of cubic is used to verify the accuracy of the method, and numerical analysis results reveal that the method is accurate enough compared with the time marching method. Furthermore, for the purpose of application, the responses of two common friction models, which are of great concern in some practical engineering fields, including a two-degree-of-freedom system containing a friction damper and a rotor disk system with circumferential rubbing, are obtained utilizing the presented approach. The influences of several model parameters on their responses are investigated as well. Numerical investigations demonstrate that the automatic differential solution framework developed in this research for solving nonlinear vibration equations has high accuracy and eliminates the need for a complicated partial derivative analytical formula derivation.

Funder

National Science and Technology Major Project

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3