Investigation of friction properties in the piston-cylinder liner region of a single-cylinder compressed air engine using the GT-SUITE program

Author:

Kunt Mehmet Akif1ORCID

Affiliation:

1. Department of Motor Vehicles and Transportation Technology, Tavsanli Vocational Training School, Dumlupinar University, Kutahya, Turkey

Abstract

Dependence on nonrenewable fuels continues to a great extent today. Overuse of fossil fuels has brought along various environmental problems. In order to reduce such problems, compressed air engines have developed significantly during the last 20 years. Compressed air engines are environment-friendly engines that do not use fossil fuel and achieve expansion using compressed air. It is of great importance for engine efficiency to decrease friction losses of piston engines. There are not many studies in the literature focusing on friction manner of piston ring liner parts of compressed air engines with a piston. In this article, the transformation of a four-stroke gasoline engine with 388 cm3 displacement into a compressed air engine has been carried out and the friction manner between piston cylinder liner has been modeled with the help of GT-SUITE program using in-cylinder pressure-cylinder volume (P-V) data obtained from different engine loads under operating pressure of 12 bar and geometrical size of the engine. It has been determined according to the results of the simulation that asperity friction losses have not changed significantly in top dead center and bottom dead center regions due to low testing speed, and hydrodynamic power losses have occurred in the middle of the course. Lack of combustion reactions in such engines has resulted in compression leakages and unavailability of a quality oil film layer. Since there are no combustion reactions, the eccentric movement of the pistons of the compressed air engines is changed by the lubricating oil, engine speed, compression leaks, and viscosity parameters.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3