Automated Transformer fault diagnosis using infrared thermography imaging, GIST and machine learning technique

Author:

Mahami Amine1ORCID,Rahmoune Chemseddine1ORCID,Zair Mohamed1,Bettahar Toufik1ORCID,Benazzouz Djamel1

Affiliation:

1. Solid Mechanics and Systems Laboratory (LMSS), University M’hamed Bougara, Boumerdes, Algeria

Abstract

Condition monitoring of electrical systems is vital in reducing maintenance costs and enhancing their reliability. By focusing on the monitoring of electrical transformers, which play a crucial role in electrical systems and are the main equipment for electrical transmission and distribution, drastic damages, undesirable loss of power and expensive curative maintenance could be avoided. In this paper, a novel noncontact and non-intrusive framework experimental method is used for the monitoring and the diagnosis of transformer faults based on an infrared thermography technique (IRT). The basic structure of this work begins with applying (IRT) to obtain a thermograph of the considered machine. Second, GIST features of the reference image and all images in the image database are extracted. At last, various faults patterns in the transformer are automatically identified using a machine learning method called Support Vector Machine (SVM). The proposed method effectiveness and capacity are evaluated based on the experimental infrared thermography (IRT) images and the diagnosis results by identifying nine sorts of electrical transformer states among which one is healthy and the remaining eight are of short circuit faults in common core winding type, and showing that it can be considered as a powerful diagnostic tool with high Classification Accuracy (CA) and stability compared to other previously used methods.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Reference27 articles.

1. Drobyshevski AA. Assessment of transformer winding mechanical condition by low-voltage impulse method, Paper accepted for presentation at 2003 IEEE Bologna PowerTech Conference, June 23-26, Bologna, Italy.

2. Frequency response analysis and short-circuit impedance measurement in detection of winding deformation within power transformers

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3