Comparison of minimum quantity lubrication and wet milling based on energy consumption modeling

Author:

Bayat Masuod1,Abootorabi Mohammad Mahdi1ORCID

Affiliation:

1. Faculty of Mechanical Engineering, Yazd University, Yazd, Iran

Abstract

Estimating the energy consumed by machining process is substantial because it has a large share of environmental effects in the manufacturing industry. In this paper, a generic energy consumption model was developed for milling processes that is able to be applied in all milling machine tools. Energy consumption of each segment was estimated according to power characteristics and parameters extracted from numerical control (NC) codes, then the total energy consumption was estimated by adding energy consumption of the machine components. Energy consumption of milling process was measured and compared in conventional (wet) and minimum quantity lubrication (MQL) conditions. The developed method was verified by comparing the estimated values of energy consumption with experimental results. Various studies have suggested different types of energy consumption modeling with machining, however; only a few studies have focused on the use of these modeling techniques. Thus, the MQL method has been rarely compared with the wet milling in terms of energy consumption. In the proposed model, energy consumption for workpiece adjustment, accounting for a major part of the costs in machining economics was considered for the first time. The results showed that the proposed method is efficient and practical for predicting energy consumption, with the possibility of occurring 5% error. Analysis of the results revealed that using the MQL method in milling process leads to 33% lower power consumption than wet milling and therefore, the MQL method can reduce the cost of production.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Distortion analysis in axial ultrasonic assisted milling of Al 7075-T6;International Journal of Lightweight Materials and Manufacture;2024-09

2. Experimental study on the ultrasonic assisted face turning residual stress;Materials and Manufacturing Processes;2024-06-04

3. Influence of MoS2-Based Nanofluid Minimum Quantity Lubrication on Machining Performance of AISI 316L Stainless Steel;Journal of Materials Engineering and Performance;2024-04-22

4. Experimental study on ultrasonic assisted milling effect on blade distortion;Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture;2024-03-26

5. Experimental characterization of energy consumption in 5-axis milling machine and developing optimization strategy;Procedia CIRP;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3