Influence of accelerated corrosion on bi-material steel-CFRP double-lap joints bonded with thick adhesive

Author:

Jaiswal Pankaj R1ORCID,Iyer Kumar Rahul1ORCID,Rooms Koen1,Rousseau Joren1,Pondicherry Kannaki1,De Waele Wim1ORCID

Affiliation:

1. Department of Electromechanical, Systems and Metal Engineering (EMSME), Soete Laboratory, Ghent University, Gent, Belgium

Abstract

Bi-material steel-composite joints attract interest for marine applications. The marine environment imposes corrosion which is a prolonged process. This work presents a two-electrode electrochemical setup for accelerating free corrosion of the steel surfaces of bi-material joints. It is used to study the impact of accelerated corrosion on the mechanical performance of bi-material double lap specimens subjected to quasi-static tensile testing. Several test series have been conducted to evaluate the influence of overlap length and bond line thickness on shear strength and failure mode. Sixty specimens with a thick layer of methyl methacrylate adhesive have been fabricated and cured at room temperature for at least 24 h. Subsequently, 30 specimens were aged by subjecting them to electrochemical corrosion for 24 h. All specimens were tested for failure in quasi-static tensile loading while monitoring the strain fields in the joint area using digital image correlation. The measurements reveal a homogeneous shear strain field at the onset of loading, with a rapidly increasing shear strain concentration near the edges of the bond line preceding final failure. Both a decrease in the adhesive thickness and an increase in the overlap length increase the shear strength. Higher shear strength was observed for the electrochemically aged specimens than that of non-aged specimens. This is attributed to the faster residual curing of the adhesive during ageing because an increasing percentage of copper ions (released from the anode) accelerates the curing of the MMA adhesive. The electrochemically aged specimens showed mixed failure modes, i.e. cohesive failure and adhesive failure at the interface between steel and adhesive, and skin failure within the composite laminates.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3