Pressure drop of turbulent flow across pipe bends

Author:

Al-Tameemi Wameedh TM1ORCID,Kader Ekhlas Edan1ORCID

Affiliation:

1. College of Engineering, University of Diyala, Baquba, Diyala, Iraq

Abstract

Pressure drop of turbulent flow across 90[Formula: see text] round bends with 10mm inside diameter investigated by employing the shear stress transport [Formula: see text] turbulent model for numerous curvature ratios and flow conditions. A total of 10 flow velocities varied from 1 to 10 m/s and 17 curvature radii between 5 and 300  mm were examined. Velocity profiles were evaluated at eight locations to examine the entrance effect. The simulation results were verified by comparing the evaluated Darcy friction factor with a well-known published correlation. The obtained results of bend pressure drop demonstrate the domination of the curvature ratio effect on the pressure drop over the influence of other factors. The computed pressure loss across the bend in terms of pressure loss coefficient [Formula: see text] and equivalent length to diameter ratio [Formula: see text] shows a good agreement with various published data in the literature with [Formula: see text] maximum average error. The coincidence between the results and the published data verifies the accuracy of the employed model to evaluate the pressure drop of turbulent flow throughout 90[Formula: see text] bends for the applied boundary conditions.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3