Sensitivity analysis-based quality optimization strategy for multi-correlation parameters in spinning process

Author:

Hu Sheng1ORCID,Wu Di2,Zhang Xi1,Wang Pinjian1

Affiliation:

1. School of Mechanical and Electrical Engineering, Xi’an Polytechnic University, Xi’an, Shaanxi, China

2. School of Basic Medical Science, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China

Abstract

To address the problem of quality optimization of multi-correlation parameters in the spinning process, this paper proposes a new method based on a sparrow search algorithm (SSA). Firstly, a generalized regression neural network (GRNN) is used to investigate the impact of the spinning process parameters on yarn quality, and quality forward modeling in the spinning process is established. And based on the coupling and correlation characteristics of spinning process parameters, sensitivity analysis is used to analyze the influence of each spinning process parameter on yarn quality, the correlation spinning process parameters for further analysis. Then a model of quality optimization with spinning process parameters is established, and SSA is used to solve the model of quality optimization with multi-correlation parameters in the spinning process. Finally, the effectiveness of the proposed method was validated through an instance. The results show that the optimal spinning process parameters combination generation of [32.159 5.2 0.8 14.8 24.540 8588.677 21.708] occurs in a configuration with a fitness value of 0.0003. The proposed sensitivity analysis-based quality optimization strategy reveals good performances in terms of both convergence speed and optimization accuracy, which will provide guidance for improving yarn quality.

Funder

Natural Science Basic Research Program of Shaanxi Province

National Natural Science Foundation of China

Publisher

SAGE Publications

Reference31 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3